COURSE INFORMATION FORM

DISCIPLINE: Physical Therapist Assistant
COURSE TITLE: Kinesiology

CR.HR 4.0 LECT HR. 2.0 LAB HR. 4.0 CLIN/INTERN HR.

CATALOG DESCRIPTION
Discussion of anatomy and function of the musculoskeletal system. Analysis of various activities. Application of data collection techniques to monitor effectiveness of physical therapy interventions as outlined in the plan of care established by the supervising physical therapist.

PREREQUISITES
BIOL 109, or BIOL 110 and BIOL 210, and PTHA 152 and PTHA 160

EXPECTED STUDENT OUTCOMES IN THE COURSE (ESO)
Upon completion of this course, the student will be able to:
1. Describe the anatomy of each joint and motions available.
2. Describe and/or locate the origin, insertion, function, and innervation of selected musculature of the face, neck, trunk and extremities.
3. Define, explain, and apply kinesiologic principles to the body.
4. Analyze various activities to determine prime movers and joint positions.
5. Recognize normal and abnormal body alignment and movement.
6. Explain and demonstrate competence in monitoring a patient’s status towards goals outlined in the physical therapy plan of care (graded according to performance checklist) including appropriate communication and use of objective measurements.
GENERAL EDUCATION OUTCOMES (ESO)
Specify which general education outcomes, if any, are substantially addressed by the course. Numbers in parentheses identify the Expected Student Outcomes linked to the specific General Education Outcome.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>(ESO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication</td>
<td></td>
</tr>
<tr>
<td>A. Listening and Speaking Skills</td>
<td></td>
</tr>
<tr>
<td>6. Demonstrate basic communication skills, both vocally (volume, rate, articulation, variety) and non-verbally (posture, eye contact, use of face and hands)</td>
<td>(6)</td>
</tr>
<tr>
<td>B. Reading Skills</td>
<td></td>
</tr>
<tr>
<td>5. Draw appropriate conclusions</td>
<td>(6)</td>
</tr>
<tr>
<td>6. Make valid generalizations and apply information</td>
<td>(6)</td>
</tr>
<tr>
<td>2. Critical Thinking</td>
<td></td>
</tr>
<tr>
<td>B. Define, analyze, and evaluate information, materials and data</td>
<td></td>
</tr>
<tr>
<td>4. Integrate information and see relevant relationships that broaden and deepen understanding</td>
<td>(3)</td>
</tr>
</tbody>
</table>

PROGRAM-LEVEL OUTCOMES

CAREER AND TECHNICAL EDUCATION PROGRAM OUTCOMES
Specify which Career and Technical program outcomes, if any, are substantially addressed by the course by completing the “Career and Technical Education template” to show the relationship between course and program outcomes to assessment measures.

1. Communicates effectively (6)
3. Competently implements the physical therapy plan of care (1,2,3,4,5,6)

CLASS-LEVEL ASSESSMENT MEASURES
Student accomplishment of expected student outcomes will be assessed using the following measures. (Identify which measures are used to assess which outcomes.)

1. Written examinations and quizzes (1,3,4,5,6)
2. Laboratory identification examinations (1,2)
3. Practical examinations (6)
4. Collaborative presentation on research topic (4,5,6)
COURSE OUTLINE FORM

DISCIPLINE Physical Therapist Assistant

COURSE TITLE: Kinesiology

Individual instructors may order this outline as fits the needs of their individual courses. In addition, they may place more emphasis on some areas than on others. What is assured is that this particular list is covered in the course. Other topics may be added to a course as the instructor sees fit, and as time and interest allow. An *asterisk can be used to mark an item as optional.

I. Kinesiology: basic principles and terminology
II. Arthrology
 A. Joint structure and function
 B. Joint mobility
 1. End feels
 2. Data collection: goniometry, inclinometers and tape measures
III. Myology
 A. Terminology
 B. Muscle function and related principles
 1. Terminology
 2. Muscle contraction
 a. isometrics and stability
 b. isotonics
 i. concentric vs. eccentric
 ii. regular vs. reverse muscle pull
 iii. active insufficiency
 3. Muscle length
 4. Manual muscle testing and dynamometry
IV. Introduction to biomechanics
V. Ankle
 A. Anatomy and function
 B. Data collection to monitor patient progress
VI. Knee
 A. Anatomy and function
 B. Data collection to monitor patient progress
VII. Hip
 A. Anatomy and function
 B. Data collection to monitor patient progress
VIII. Spine
 A. Anatomy and function
 B. Data collection to monitor patient progress
IX. Shoulder
 A. Anatomy and function
 B. Data collection to monitor patient progress
X. Elbow, wrist and hand
 A. Anatomy and function
 B. Data collection to monitor patient progress
XI. Collaborative research presentations