Find the domain of the expression

1. \(y - 17 \)
 \(y^2 - 9y - 22 \)
 a) \((-\infty, -2) \cup (-2, 1) \cup (1, 17) \cup (17, \infty)\)
 b) \((-\infty, 17) \cup (17, \infty)\)
 c) \((-\infty, \infty)\)
 d) \((-\infty, -2) \cup (-2, 1) \cup (1, 11) \cup (11, \infty)\)

2. \(\frac{5}{x - 4} \)
 a) \(\{x \mid x \neq 4\} \)
 b) \(\{x \mid x = 4\} \)
 c) \(\{x \mid x \neq -4\} \)
 d) \(\{x \mid x \neq 4, x \neq -5\} \)

3. \(\frac{3y^2 - 12}{y^2 + 4} \)
 a) \((-\infty, -2) \cup (-2, 2) \cup (2, \infty)\)
 b) \((-\infty, \infty)\)
 c) \((-\infty, -2) \cup (-2, \infty)\)
 d) \((-\infty, 2) \cup (2, \infty)\)

4. \(g(y) = \sqrt[4]{6y - 24} \)
 a) \([4, \infty)\)
 b) \((4, \infty)\)
 c) \((-\infty, \infty)\)
 d) \((-\infty, 4]\)

Reduce the expression

5. \(\frac{-15(9x - 3)(x + 10)}{3(x + 10)^3} \)
 a) \(\frac{-5(9x - 3)}{(x + 10)} \)
 b) \(\frac{-15(9x - 3)}{3} \)
 c) \(-5(9x - 3)\)
 d) \(\frac{5(9x - 3)}{(x + 10)} \)

Find all solutions to the equation

6. \(3t^2 + 11t - 20 = 0 \)
 a) \(t = \frac{5}{3}, t = 4 \)
 b) \(t = \frac{4}{3}, t = -5 \)
 c) \(t = -\frac{4}{3}, t = 5 \)
 d) \(t = \frac{5}{3}, t = -4 \)

7. \(-17w + 40 = 8w^2 + 5w\)
 a) \(w = 8, w = \frac{5}{8} \)
 b) \(w = 20, w = \frac{29}{4} \)
 c) \(w = -3, w = \frac{6}{5} \)
 d) \(w = \frac{5}{4}, w = -4 \)

Solve the equation by using the square root property

8. \(r^2 = 81 \)
 a) \(r = 9 \)
 b) \(r = \pm 9 \)
 c) No Solution
 d) None of the Above

Solve using the quadratic formula

9. \(11y - 6 + 30y^2 = 0 \)
 a) \(y = 0.3 + 3.7i, y = 0.3 - 3.7i \)
 b) \(y = \frac{1}{3}, y = \frac{2}{5} \)
 c) \(y = -\frac{2}{3}, y = \frac{3}{10} \)
 d) \(y = \frac{3}{2}, y = -\frac{10}{3} \)

10. \(7x(x - 2) = 5 \)
 a) \(x = \frac{14 \pm 2i\sqrt{21}}{7} \)
 b) \(x = \frac{7 \pm \sqrt{21}}{2} \)
 c) \(x = 1 \pm 4\sqrt{21} \)
 d) \(x = \frac{7 \pm 2\sqrt{21}}{7} \)
11. Find the discriminant, \(b^2 - 4ac \), and determine the number and type of solutions. Choose from two rational solutions, one rational solution, two irrational solutions, or two imaginary solutions.

\(6n^2 = 8 \)

a) -192: Two imaginary solutions

b) 192: Two imaginary solutions

c) 192: Two irrational solutions

d) None of the above

Solve the equation

12. \(\frac{z^2}{8} - \frac{1}{4} = \frac{17z}{24} \)

a) No solution

b) \(z = 3, z = \frac{-2}{3} \)

c) \(z = 6 \)

d) \(z = -\frac{1}{3}, z = 6 \)

13. \(\frac{3}{x} \cdot \frac{3}{x-6} = \frac{3x-15}{x-6} \)

a) \(x = 1 \)

b) \(x = 6, x = 1 \)

c) \(x = \frac{-5}{2}, x = \frac{1}{3} \)

d) No solution

14. Multiply: \(\frac{12}{2x-y} \cdot \frac{3y-6x}{4} \)

a) \(\frac{y-2x}{2x-y} \)

b) \(\frac{16}{-4x^2 + 4xy - y^2} \)

c) \(\frac{-3(3y-6x)}{2x-y} \)

d) -9

15. Divide: \(\frac{x-3}{x+3} \div \frac{x^2-3x}{5x} \)

a) \(\frac{5}{3x} \)

b) \(\frac{x^3-6x^2+9x}{5x^2 + 9x} \)

c) \(\frac{5}{x+3} \)

d) \(\frac{x+3}{5x^2 - 3x} \)

16. Multiply: \(\frac{7x-28}{x} \cdot \frac{x^2+3x}{4x-16} \)

a) \(\frac{7x^3-84x}{4x^2-16x} \)

b) \(\frac{7(x+3)}{4} \)

c) \(\frac{7x^2+21x}{4x^2-16} \)

d) \(\frac{4(x-4)}{x} \)

17. Divide: \(\frac{z^4}{12} \)

a) \(\frac{3}{2z^3} \)

b) \(\frac{216}{z^5} \)

c) \(\frac{18+z}{z^4+z} \)

d) \(\frac{3z^3}{2} \)

18. Subtract: \(\frac{7n+14}{n^2-5} - \frac{-3+2n}{n^2-5} \)

a) \(5n+17 \)

b) \(\frac{5n+17}{n^2-5} \)

c) \(\frac{9n+17}{n^2-5} \)

d) \(\frac{9n+11}{n^2-5} \)
Perform the indicated operations

19. \[\frac{4y}{y^2 - 3y - 10} + \frac{y + 1}{y - 5} - \frac{2y - 7}{y + 2} \]
 a) \[\frac{-y^2 + 24y - 33}{y^2 - 3y - 10} \]
 b) \[\frac{-y^2 - 10y + 37}{y^2 - 3y - 10} \]
 c) \[\frac{3y + 8}{y^2 - 4y - 13} \]
 d) \[\frac{3y + 8}{(y^2 - 3y - 10)(y - 5)(y + 2)} \]

20. \[\frac{8}{x + 5} - \frac{3}{x - 5} + \frac{5}{x^2 - 25} \]
 a) \[\frac{8x + 3}{x^2 - 25} \]
 b) \[\frac{25x + 25}{x - 5} \]
 c) \[\frac{5x - 50}{x^2 - 25} \]
 d) \[\frac{3x - 5}{x^2 - 5} \]

21. If \(z(t) = 2t^2 + 7t - 4 \), find \(z(-1) \) and \(z(4) \).
 a) \(z(-1) = -13 \); \(z(4) = 56 \)
 b) \(z(-1) = -9 \); \(z(4) = 56 \)
 c) \(z(-1) = 5 \); \(z(4) = 35 \)
 d) \(z(-1) = -7 \); \(z(4) = 88 \)

22. If \(f(x) = 3x^2 + 7x - 10 \), find and simplify \(f(2 + x) \)
 a) \(16 + x \)
 b) \(3x^2 + 2x + 16 \)
 c) \(3x^2 + 19x + 16 \)
 d) \(3x^2 + 7x - 12 \)

23. Use the graph of the function \(f(x) \) to find the \(x \)-value for which \(f(x) = 3 \)

 ![Graph of the function f(x)]
 a) -1
 b) 2
 c) 3
 d) -2

24. Which of the following is a linear function?
 a) \(f(x) = \frac{11}{x} + 7 \)
 b) \(f(x) = 11 + x + x^2 \)
 c) \(f(x) = \sqrt{11x + 7} \)
 d) \(f(x) = 11 - 7x \)
25. What is the range of the relation whose graph is below?

![Graph showing the range of a relation]

a) \(\{x | -20 \leq x \leq 15\} \)
 b) \(\{-20, -10, 0, 10, 15\} \)
 c) \(\{y | -40 \leq y \leq 20\} \)
 d) \(\{0, -20, -40, 20\} \)

26. Find the \(x \)- and \(y \)-intercepts of the function: \(g(x) = -8x - 6 \)

a) \((0,0)\)
 b) \((0, -6)\) and \(\left(-\frac{3}{4}, 0\right)\)
 c) \((-6, 0)\) and \(\left(0, -\frac{3}{4}\right)\)
 d) \((0, -6)\) and \((14, 0)\)

Find and write the equation of the line

27. Slope = \(-\frac{1}{5}\) and \(y \)-intercept \(\left(0, \frac{9}{8}\right)\)

a) \(y = \frac{1}{5}(x - \frac{9}{8}) \)
 b) \(y = \frac{1}{5}x + \frac{9}{8} \)
 c) \(x = -\frac{1}{5}y - \frac{9}{8} \)
 d) \(y = -\frac{1}{5}(x + \frac{9}{8}) \)

28. Slope = 12, goes through the point \((-1, 4)\)

a) \(y = 12x + 4 \)
 b) \(y = 12x - 1 \)
 c) \(y = 12x + 16 \)
 d) \(y = -3x + 12 \)

29. Through the point \((1, 10)\) that is parallel to the line \(2y - 4x = 12\)

a) \(y = 4x + 6 \)
 b) \(y = 2x + 8 \)
 c) \(2y - 4x = 10 \)
 d) \(y = 2x + 6 \)

30. Solve the system using the substitution method:

\[
\begin{align*}
y &= -29 - 3x \\
4x + 7y &= -50
\end{align*}
\]

a) \((9, -9)\)
 b) \((-9, -2)\)
 c) \((-2, -9)\)
 d) \((-2, 10)\)

Solve the system using the addition method:

31. \[
\begin{align*}
11x + y &= 69 \\
13x - y &= 99
\end{align*}
\]

a) \((7, -8)\)
 b) \((4, -7)\)
 c) \((-8, 7)\)
 d) There is no solution
32. \(-11x - 2y = 8\)
 \[11x + 2y = 121\]
 a) There is no solution
 b) \(\{(x, y) | 11x + 2y = 121\}\)
 c) \(\left(\frac{1}{2}, -\frac{3}{4}\right)\)
 d) (1,8)

33. At one store, 5 pairs of jeans and 2 sweatshirts costs $230, while 3 pairs of jeans and 4 sweatshirts costs $208. Find the cost of one sweatshirt.
 a) $25
 b) $36
 c) $22
 d) $38

34. Solve the inequality. Write the answer in interval notation
 \[8 > 3x \text{ and } -9 + 2x \geq -14\]
 a) \((-\infty, -\frac{5}{2}) \cup \left[\frac{8}{3}, \infty\right)\)
 b) No solution
 c) \(\left[-\frac{8}{3}, \frac{5}{2}\right]\)
 d) \(\left[-\frac{5}{2}, \frac{8}{3}\right]\)

35. \(-11 < 9 - 11z \leq 10\)
 a) \(\left[-\frac{1}{11}, \frac{20}{11}\right]\)
 b) \(\left[\frac{20}{11}, -\frac{1}{11}\right]\)
 c) \(-\infty, \frac{20}{11}\)
 d) \((-20, 1)\)

36. Solve the inequality, graph the solution, and write the answer in interval notation
 \[12y - 6 \geq 18 \text{ or } y < -2\]
 a) \((-\infty, -2) \cup [2, \infty)\)
 b) \((-\infty, -2) \cup (2, \infty)\)
 c) \((-\infty, -2) \cup [2, \infty)\)
 d) None of the above

37. Solve the equation
 \[2 - |3w - 18| = 8\]
 a) \(w = 8, w = 4\)
 b) \(w = 4\)
 c) \(w = 6, w = 2\)
 d) No solution

38. \[-\frac{11}{4} + \frac{2}{3}|3y - 6| = -2\]
 a) \(y = \frac{13}{8}, y = \frac{19}{8}\)
 b) \(y = 2, y = -\frac{5}{2}\)
 c) \(y = \frac{1}{3}, y = -\frac{11}{2}\)
 d) No solution

39. Solve the inequality. Write the answer in interval notation
 \[|4w - 7| \geq 5\]
 a) \(\left[\frac{1}{2}, 3\right]\)
 b) \((-\infty, -3] \cup \left[\frac{1}{2}, \infty\right)\)
 c) \((-\infty, \frac{1}{2}] \cup [3, \infty)\)
 d) \(-3, -\frac{1}{2}\)

40. Solve the inequality
 \[-11 \geq |2b - 23|\]
 a) \(6 \leq b \leq 17\)
 b) \(b \leq 6 \text{ or } b \geq 17\)
 c) All real numbers
 d) No solution
Solve the inequality. Write the answer in interval notation
41. \(-2z + 4 \leq 4\)
 a) \([0,4]\) b) \((-\infty, -2)\) c) All real numbers d) No solution

Write the expression by using rational exponents rather than radical notation
42. \(13\sqrt[3]{x^7}\)
 a) \(13x^{\frac{3}{7}}\) b) \((13x)^{\frac{3}{7}}\) c) \(13x^\frac{7}{3}\) d) \(\frac{13}{x^{\frac{7}{3}}}\)

Simplify the expression by using the properties of rational exponents. Write the final answer using positive exponents only.
43. \(h^{\frac{10}{3}} \cdot h^{\frac{2}{3}}\)
 a) \(h^{\frac{9}{2}}\) b) \(h^{\frac{20}{3}}\) c) \(h^2\) d) \(h^4\)

44. \(\left(\frac{81s^{12}r^{-4}}{16s^{-4}r^{4}}\right)^{\frac{3}{4}}\)
 a) \(\frac{27s^6}{8}\) b) \(\frac{3s^{16}r^8}{2}\) c) \(\frac{3s^{12}}{2r^6}\) d) \(\frac{27s^{12}}{8r^6}\)

Simplify the radical. Assume that all variables represent positive real numbers
45. \(\frac{\sqrt{27z}}{\sqrt{3z}}\)
 a) 3 b) 3z c) 9 d) \(\sqrt{3z}\)

46. \(\sqrt[3]{52x^5}\)
 a) \(2x^2\sqrt[3]{13x}\) b) \(2\sqrt[3]{13x^5}\) c) \(2x\sqrt[3]{13x^3}\) d) \(4x^2\sqrt[3]{13x}\)

47. \(\sqrt[3]{72y^8}\)
 a) \(y^2\sqrt[3]{72y^2}\) b) \(2y\sqrt[3]{9y^5}\) c) \(2y^2\sqrt[3]{9y^2}\) d) \(8y^\frac{5}{3}\sqrt[3]{9y^2}\)

48. \(\sqrt[4]{\frac{8b^2}{2b^{12}}}\)
 a) \(\frac{2}{b^5}\) b) \(\sqrt[4]{\frac{4}{b^{10}}}\) c) \(2\sqrt[4]{b^{10}}\) d) \(\frac{2}{b\sqrt[4]{b^8}}\)

Add, if possible
49. \(7\sqrt{2} + \sqrt{98}\)
 a) 28 b) 70 c) \(14\sqrt{2}\) d) Cannot simplify
Multiply
50. \(\sqrt{3} \cdot \sqrt{24} \)
 a) \(\sqrt{27} \)
 b) \(6\sqrt{2} \)
 c) \(2\sqrt{6} \)
 d) \(36\sqrt{2} \)

51. \(-4\sqrt{4} \cdot 6\sqrt{6} \)
 a) \(-48\sqrt{3} \)
 b) \(-48\sqrt{6} \)
 c) \(2\sqrt{10} \)
 d) \(-192\sqrt{3} \)

52. \(\sqrt{2}(\sqrt{8} - \sqrt{3}) \)
 a) \(4 - \sqrt{6} \)
 b) \(4 - \sqrt{3} \)
 c) \(2\sqrt{8} - 6 \)
 d) \(4 + \sqrt{6} \)

53. \((\sqrt{12} - 1)(\sqrt{3} + 5) \)
 a) \(1 \)
 b) \(1 + 9\sqrt{3} \)
 c) \(31 + 5\sqrt{12} - \sqrt{3} \)
 d) \(\sqrt{33} - 5 \)

54. \(\sqrt[4][]{p^2q^3} \cdot \sqrt[3][]{p^5q^2} \)
 a) \(\sqrt[12]{p^10q^6} \)
 b) \(p \sqrt[7]{q^6} \)
 c) \(p^2q \sqrt[13]{p^2q^5} \)
 d) \(pq \sqrt[7]{p^3q} \)

Rationalize the denominator
55. \(\frac{-14}{\sqrt{10}} \)
 a) \(\frac{-7\sqrt{100}}{5} \)
 b) \(\frac{5\sqrt{100}}{-7} \)
 c) \(\frac{-7\sqrt{10}}{5} \)
 d) Cannot simplify
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>B</td>
<td>22.</td>
<td>C</td>
<td>41.</td>
</tr>
<tr>
<td>4.</td>
<td>A</td>
<td>23.</td>
<td>D</td>
<td>42.</td>
</tr>
<tr>
<td>5.</td>
<td>A</td>
<td>24.</td>
<td>D</td>
<td>43.</td>
</tr>
<tr>
<td>7.</td>
<td>D</td>
<td>26.</td>
<td>B</td>
<td>45.</td>
</tr>
<tr>
<td>8.</td>
<td>B</td>
<td>27.</td>
<td>B</td>
<td>46.</td>
</tr>
<tr>
<td>13.</td>
<td>A</td>
<td>32.</td>
<td>A</td>
<td>51.</td>
</tr>
<tr>
<td>14.</td>
<td>D</td>
<td>33.</td>
<td>A</td>
<td>52.</td>
</tr>
<tr>
<td>15.</td>
<td>C</td>
<td>34.</td>
<td>D</td>
<td>53.</td>
</tr>
<tr>
<td>17.</td>
<td>A</td>
<td>36.</td>
<td>A</td>
<td>55.</td>
</tr>
<tr>
<td>18.</td>
<td>B</td>
<td>37.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>A</td>
<td>38.</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>