Solving Literal Equations Methods

Definition: A literal equation is, simply put, an equation that has a lot of letters or variables. For example,

\[A = lw \]
(The formula for finding the area of a rectangle)

and

\[E = mc^2 \]
(Einstein’s Theory of Relativity)

are both literal equations.

When given a literal equation, you will often be asked to solve the equation for a given variable. The goal is to isolate that given variable. The process is the same process that you use to solve linear equations; the only difference is that you will be working with a lot more letters, and you may not be able to simplify as much as you can with linear equations. This packet will hopefully show you the process in a simple manner so that you will be able to solve literal equations yourself. See examples before for the method to solving literal equations for a given variable:

- Solve \(A = bh \) for \(b \).

Since \(h \) is multiplied times \(b \), you must divide both sides by \(h \) in order to isolate \(b \).

\[
\begin{align*}
A &= bh \\
\frac{A}{h} &= \frac{b \cdot h}{h} \\
\frac{A}{h} &= b
\end{align*}
\]
• Solve \(P = 2l + 2w \) for \(w \).

First, you subtract \(2l \) from both sides, then divide both sides by 2 to isolate \(w \).

\[
P = 2l + 2w
\]

\[
P = 2l + 2w
\]

\[
\frac{P - 2l}{2} = \frac{2w}{2}
\]

\[
\frac{P - 2l}{2} = w
\]

• Solve \(Q = \frac{(c + d)}{2} \) for \(d \).

Since \((c+d) \) is divided by 2, you must first multiply both sides of the equation by 2. Then you have to subtract \(c \) from both sides in order to isolate \(d \).

\[
Q = \frac{(c + d)}{2}
\]

\[
2 \cdot Q = \frac{(c + d)}{2} \cdot 2
\]

\[
2Q = c + d
\]

\[
2Q = c + d
\]

\[
\frac{2Q - c}{-c} = \frac{d}{d}
\]

\[
2Q - c = d
\]
- Solve $V = \frac{3k}{t}$ for t.

Since t is in the denominator, you must first multiply both sides by t to get it out of the denominator. Then you need to divide both sides by V in order to isolate t.

\[V = \frac{3k}{t} \]
\[V \cdot t = \frac{3k}{f} \cdot t \]
\[\frac{V}{V} = \frac{3k}{V} \]
\[t = \frac{3k}{V} \]

- Solve $Q = 3a + 5ac$ for a.

This one’s tricky! Initially, it seems hard to isolate the a, since it’s split up between two unlike terms, but as you see, if you simply factor the a out of the two terms, then you are left with $a(3+5c)$. Then you just need to divide both sides by $(3+5c)$ in order to isolate a.

\[Q = 3a + 5ac \]
\[Q = a(3 + 5c) \]
\[\frac{Q}{3+5c} = a \]